Wave Propagation in Thin-walled Aortic Analogues

نویسندگان

  • C. G. Giannopapa
  • F. N. van de Vosse
چکیده

Research on wave propagation in liquid-filled vessels is often motivated by the need to understand arterial blood flow. Theoretical and experimental investigation of the propagation of waves in flexible tubes has been studied by many researchers. The analytical one-dimensional frequency domain wave theory has a great advantage of providing accurate results without the additional computational cost related to the modern time domain simulation models. For assessing the validity of analytical and numerical models well defined in-vitro experiments are of great importance. The objective of this paper is to present a frequency domain analytical model based on one-dimensional wave propagation theory and validate it against experimental data obtained for aortic analogues. The elastic and viscoelastic properties of the wall are included in the analytical model. The pressure, volumetric flow rate and wall distention obtained from the analytical model are compared with experimental data in two straight tubes with aortic relevance. The analytical results and the experimental measurements were found to be in good agreement when the viscoelastic properties of the wall are taken into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method using induced waves to study pressure propagation in human arteries.

THE observation that small pressure disturbances could be induced in the brachial artery and readily detected on radial arterial pressure records prompted the study of induced waves of two general types, impact transients' and forced sinusoidal waves. This report describes the method we have used to study "impact" waves and indicates the general nature of our findings. The interpretation of pul...

متن کامل

On the effective plate thickness of monolayer graphene from flexural wave propagation

We utilize classical molecular dynamics to study flexural, or transverse wave propagation in monolayer graphene sheets and compare the resulting dispersion relationships to those expected from continuum thin plate theory. In doing so, we determine that regardless of the chirality for monolayer graphene, transverse waves exhibit a dispersion relationship that corresponds to the lowest order anti...

متن کامل

Shepherd Contribution to Fy 04 Asci Annual

Experiments were carried out in FY04 on detonation wave structure, detonation wave diffraction, and the fracture of thin-walled tubes by detonation waves. Computations were performed on detonation wave propagation and the elastic response of tubes to detonation loading. One new effort was initiated on the diffraction of detonation waves, and the other activities were a continuation of previous ...

متن کامل

Wave Propagation Analysis of CNT Reinforced Composite Micro-Tube Conveying Viscose Fluid in Visco-Pasternak Foundation Under 2D Multi-Physical Fields

In this research, wave propagation analysis in polymeric smart nanocomposite micro-tubes reinforced by single-walled carbon nanotubes (SWCNT) conveying fluid is studied. The surrounded elastic medium is simulated by visco-Pasternak model while the composite micro-tube undergoes electro-magneto-mechanical fields. By means of micromechanics method, the constitutive structural coefficients of nano...

متن کامل

Longitudinal Wave Propagation Analysis of Stationary and Axially Moving Carbon Nanotubes Conveying Fluid

In this study, the effect of small-scale of both nanostructure and nano-fluid flowing through it on the natural frequency and longitudinal wave propagation are investigated. Here, the stationary and axially moving single-walled carbon nanotube conveying fluid are studied. The boundary conditions for the stationary nanotube is considering clamped-clamped and pined-pined and for the axially movin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009